CVPR2022
-
Title:Text to Image Generation with Semantic-Spatial Aware GAN (使用语义空间感知 GAN 生成文本到图像)paper
Author:Kai Hu, Wentong Liao, Michael Ying Yang, Bodo Rosenhahn
Abstract:
Text-to-image synthesis (T2I) aims to generate photo-realistic images which are semantically consistent with the text descriptions. Existing methods are usually built upon conditional generative adversarial networks (GANs) and initialize an image from noise with sentence embedding, and then refine the features with fine-grained word embedding iteratively. A close inspection of their generated images reveals a major limitation: even though the generated image holistically matches the description, individual image regions or parts of somethings are often not recognizable or consistent with words in the sentence, e.g. “a white crown”. To address this problem, we propose a novel framework Semantic-Spatial Aware GAN for synthesizing images from input text. Concretely, we introduce a simple and effective Semantic-Spatial Aware block, which (1) learns semantic-adaptive transformation conditioned on text to effectively fuse text features and image features, and (2) learns a semantic mask in a weakly-supervised way that depends on the current text-image fusion process in order to guide the transformation spatially. Experiments on the challenging COCO and CUB bird datasets demonstrate the advantage of our method over the recent state-of-the-art approaches, regarding both visual fidelity and alignment with input text description.
-
Title: An Empirical Study of Training End-to-End Vision-and-Language Transformers(训练端到端视觉-语言transformer的实证研究)paper
Author: Zi-Yi Dou, Yichong Xu, Zhe Gan, Jianfeng Wang, Shuohang Wang, Lijuan Wang,Chenguang Zhu, Pengchuan Zhang, Lu Yuan, Nanyun Peng, Zicheng Liu, Michael Zeng
Abstract:
Vision-and-language (VL) pre-training has proven to be highly effective on various VL downstream tasks. While recent work has shown that fully transformer-based VL models can be more efficient than previous region-feature-based methods, their performance on downstream tasks often degrades significantly. In this paper, we present METER, a Multimodal End-to-end TransformER framework, through which we investigate how to design and pre-train a fully transformer-based VL model in an end-to-end manner. Specifically, we dissect the model designs along multiple dimensions: vision encoders (e.g., CLIP-ViT, Swin transformer), text encoders (e.g., RoBERTa, DeBERTa), multimodal fusion module (e.g., merged attention vs. co-attention), architectural design (e.g., encoder-only vs. encoder-decoder), and pre-training objectives (e.g., masked image modeling). We conduct comprehensive experiments and provide insights on how to train a performant VL transformer. METER achieves an accuracy of 77.64% on the VQAv2 test-std set using only 4M images for pre-training, surpassing the state-of-the-art region-feature-based model by 1.04%, and outperforming the previous best fully transformer-based model by 1.6%. Notably, when further scaled up, our best VQA model achieves an accuracy of 80.54%.
-
Title:L-Verse: Bidirectional Generation Between Image and Text(L-Verse:图像文本间的双向生成)paper
Author:Taehoon Kim, Gwangmo Song, Sihaeng Lee, Sangyun Kim, Yewon Seo, Soonyoung Lee,Seung Hwan Kim, Honglak Lee, Kyunghoon Bae
Abstract:
Far beyond learning long-range interactions of natural language, transformers are becoming the de-facto standard for many vision tasks with their power and scalability. Especially with cross-modal tasks between image and text, vector quantized variational autoencoders (VQ-VAEs) are widely used to make a raw RGB image into a sequence of feature vectors. To better leverage the correlation between image and text, we propose L-Verse, a novel architecture consisting of feature-augmented variational autoencoder (AugVAE) and bidirectional auto-regressive transformer (BiART) for image-to-text and text-to-image generation. Our AugVAE shows the state-of-the-art reconstruction performance on ImageNet1K validation set, along with the robustness to unseen images in the wild. Unlike other models, BiART can distinguish between image (or text) as a conditional reference and a generation target. L-Verse can be directly used for image-to-text or text-to-image generation without any finetuning or extra object detection framework. In quantitative and qualitative experiments, L-Verse shows impressive results against previous methods in both image-to-text and text-to-image generation on MS-COCO Captions. We furthermore assess the scalability of L-Verse architecture on Conceptual Captions and present the initial result of bidirectional vision-language representation learning on general domain.
-
Title:Conditional Prompt Learning for Vision-Language Models(视觉-语言模型的条件提示学习)paper
Author:Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu
Abstract:
With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning – a recent trend in NLP – to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp’s static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well.
-
Title:CLIP-NeRF: Text-and-Image Driven Manipulation of Neural Radiance Fields(CLIP-NeRF:文本和图像驱动的神经辐射场操作)paper
Author:Can Wang, Menglei Chai, Mingming He, Dongdong Chen, Jing Liao
Abstract:
We present CLIP-NeRF, a multi-modal 3D object manipulation method for neural radiance fields (NeRF). By leveraging the joint language-image embedding space of the recent Contrastive Language-Image Pre-Training (CLIP) model, we propose a unified framework that allows manipulating NeRF in a user-friendly way, using either a short text prompt or an exemplar image. Specifically, to combine the novel view synthesis capability of NeRF and the controllable manipulation ability of latent representations from generative models, we introduce a disentangled conditional NeRF architecture that allows individual control over both shape and appearance. This is achieved by performing the shape conditioning via applying a learned deformation field to the positional encoding and deferring color conditioning to the volumetric rendering stage. To bridge this disentangled latent representation to the CLIP embedding, we design two code mappers that take a CLIP embedding as input and update the latent codes to reflect the targeted editing. The mappers are trained with a CLIP-based matching loss to ensure the manipulation accuracy. Furthermore, we propose an inverse optimization method that accurately projects an input image to the latent codes for manipulation to enable editing on real images. We evaluate our approach by extensive experiments on a variety of text prompts and exemplar images and also provide an intuitive interface for interactive editing.
-
Title:Pseudo-Q: Generating Pseudo Language Queries for Visual Grounding(Pseudo-Q:为视觉基础生成伪语言查询)paper
Author:Haojun Jiang, Yuanze Lin, Dongchen Han, Shiji Song, Gao Huang
Abstract:
Visual grounding, i.e., localizing objects in images according to natural language queries, is an important topic in visual language understanding. The most effective approaches for this task are based on deep learning, which generally require expensive manually labeled image-query or patch-query pairs. To eliminate the heavy dependence on human annotations, we present a novel method, named Pseudo-Q, to automatically generate pseudo language queries for supervised training. Our method leverages an off-the-shelf object detector to identify visual objects from unlabeled images, and then language queries for these objects are obtained in an unsupervised fashion with a pseudo-query generation module. Then, we design a task-related query prompt module to specifically tailor generated pseudo language queries for visual grounding tasks. Further, in order to fully capture the contextual relationships between images and language queries, we develop a visual-language model equipped with multi-level cross-modality attention mechanism. Extensive experimental results demonstrate that our method has two notable benefits: (1) it can reduce human annotation costs significantly, e.g., 31% on RefCOCO without degrading original model’s performance under the fully supervised setting, and (2) without bells and whistles, it achieves superior or comparable performance compared to state-of-the-art weakly-supervised visual grounding methods on all the five datasets we have experimented.
-
Title:NLX-GPT: A Model for Natural Language Explanations in Vision and Vision-Language Tasks(NLX-GPT:视觉和视觉-语言任务中的自然语言解释模型)paper
Author:Fawaz Sammani, Tanmoy Mukherjee, Nikos Deligiannis
Abstract:
Natural language explanation (NLE) models aim at explaining the decision-making process of a black box system via generating natural language sentences which are human-friendly, high-level and fine-grained. Current NLE models explain the decision-making process of a vision or vision-language model (a.k.a., task model), e.g., a VQA model, via a language model (a.k.a., explanation model), e.g., GPT. Other than the additional memory resources and inference time required by the task model, the task and explanation models are completely independent, which disassociates the explanation from the reasoning process made to predict the answer. We introduce NLX-GPT, a general, compact and faithful language model that can simultaneously predict an answer and explain it. We first conduct pre-training on large scale data of image-caption pairs for general understanding of images, and then formulate the answer as a text prediction task along with the explanation. Without region proposals nor a task model, our resulting overall framework attains better evaluation scores, contains much less parameters and is 15× faster than the current SoA model. We then address the problem of evaluating the explanations which can be in many times generic, data-biased and can come in several forms. We therefore design 2 new evaluation measures: (1) explain-predict and (2) retrieval-based attack, a self-evaluation framework that requires no labels.
-
Title:HairCLIP: Design Your Hair by Text and Reference Image(HairCLIP:通过文本和参考图像设计你的头发)paper
Author:Tianyi Wei, Dongdong Chen, Wenbo Zhou, Jing Liao, Zhentao Tan, Lu Yuan,Weiming Zhang, Nenghai Yu
Abstract:
Hair editing is an interesting and challenging problem in computer vision and graphics. Many existing methods require well-drawn sketches or masks as conditional inputs for editing, however these interactions are neither straightforward nor efficient. In order to free users from the tedious interaction process, this paper proposes a new hair editing interaction mode, which enables manipulating hair attributes individually or jointly based on the texts or reference images provided by users. For this purpose, we encode the image and text conditions in a shared embedding space and propose a unified hair editing framework by leveraging the powerful image text representation capability of the Contrastive Language-Image Pre-Training (CLIP) model. With the carefully designed network structures and loss functions, our framework can perform high-quality hair editing in a disentangled manner. Extensive experiments demonstrate the superiority of our approach in terms of manipulation accuracy, visual realism of editing results, and irrelevant attribute preservation.
-
Title:Vision-Language Pre-Training with Triple Contrastive Learning(三重对比学习的视觉语言预训练)paper
Author:Jinyu Yang, Jiali Duan, Son Tran, Yi Xu, Sampath Chanda, Liqun Chen, Belinda Zeng,Trishul Chilimbi, Junzhou Huang
Abstract:
Vision-language representation learning largely benefits from image-text alignment through contrastive losses (e.g., InfoNCE loss). The success of this alignment strategy is attributed to its capability in maximizing the mutual information (MI) between an image and its matched text. However, simply performing cross-modal alignment (CMA) ignores data potential within each modality, which may result in degraded representations. For instance, although CMA-based models are able to map image-text pairs close together in the embedding space, they fail to ensure that similar inputs from the same modality stay close by. This problem can get even worse when the pre-training data is noisy. In this paper, we propose triple contrastive learning (TCL) for vision-language pre-training by leveraging both cross-modal and intra-modal self-supervision. Besides CMA, TCL introduces an intra-modal contrastive objective to provide complementary benefits in representation learning. To take advantage of localized and structural information from image and text input, TCL further maximizes the average MI between local regions of image/text and their global summary. To the best of our knowledge, ours is the first work that takes into account local structure information for multi-modality representation learning. Experimental evaluations show that our approach is competitive and achieves the new state of the art on various common down-stream vision-language tasks such as image-text retrieval and visual question answering.
-
Title:FENeRF: Face Editing in Neural Radiance Fields(FENeRF:神经辐射场中的人脸编辑)paper
Author:Jingxiang Sun, Xuan Wang, Yong Zhang, Xiaoyu Li, Qi Zhang, Yebin Liu, Jue Wang
Abstract:
Previous portrait image generation methods roughly fall into two categories: 2D GANs and 3D-aware GANs. 2D GANs can generate high fidelity portraits but with low view consistency. 3D-aware GAN methods can maintain view consistency but their generated images are not locally editable. To overcome these limitations, we propose FENeRF, a 3D-aware generator that can produce view-consistent and locally-editable portrait images. Our method uses two decoupled latent codes to generate corresponding facial semantics and texture in a spatial aligned 3D volume with shared geometry. Benefiting from such underlying 3D representation, FENeRF can jointly render the boundary-aligned image and semantic mask and use the semantic mask to edit the 3D volume via GAN inversion. We further show such 3D representation can be learned from widely available monocular image and semantic mask pairs. Moreover, we reveal that joint learning semantics and texture helps to generate finer geometry. Our experiments demonstrate that FENeRF outperforms state-of-the-art methods in various face editing tasks.
-
Title:Domain Generalization via Shuffled Style Assembly for Face Anti-Spoofing(通过 Shuffled Style Assembly 进行人脸反欺骗的域泛化)paper
Author:Zhuo Wang, Zezheng Wang, Zitong Yu, Weihong Deng, Jiahong Li, Tingting Gao,Zhongyuan Wang
Abstract:
With diverse presentation attacks emerging continually, generalizable face anti-spoofing (FAS) has drawn growing attention. Most existing methods implement domain generalization (DG) on the complete representations. However, different image statistics may have unique properties for the FAS tasks. In this work, we separate the complete representation into content and style ones. A novel Shuffled Style Assembly Network (SSAN) is proposed to extract and reassemble different content and style features for a stylized feature space. Then, to obtain a generalized representation, a contrastive learning strategy is developed to emphasize liveness-related style information while suppress the domain-specific one. Finally, the representations of the correct assemblies are used to distinguish between living and spoofing during the inferring. On the other hand, despite the decent performance, there still exists a gap between academia and industry, due to the difference in data quantity and distribution. Thus, a new large-scale benchmark for FAS is built up to further evaluate the performance of algorithms in reality. Both qualitative and quantitative results on existing and proposed benchmarks demonstrate the effectiveness of our methods.
-
Title:Self-supervised Learning of Adversarial Example: Towards Good Generalizations for Deepfake Detection(对抗样本的自监督学习:迈向 Deepfake 检测的良好泛化)paper
Author:Liang Chen, Yong Zhang, Yibing Song, Lingqiao Liu, Jue Wang
Abstract:
Recent studies in deepfake detection have yielded promising results when the training and testing face forgeries are from the same dataset. However, the problem remains challenging when one tries to generalize the detector to forgeries created by unseen methods in the training dataset. This work addresses the generalizable deepfake detection from a simple principle: a generalizable representation should be sensitive to diverse types of forgeries. Following this principle, we propose to enrich the “diversity” of forgeries by synthesizing augmented forgeries with a pool of forgery configurations and strengthen the “sensitivity” to the forgeries by enforcing the model to predict the forgery configurations. To effectively explore the large forgery augmentation space, we further propose to use the adversarial training strategy to dynamically synthesize the most challenging forgeries to the current model. Through extensive experiments, we show that the proposed strategies are surprisingly effective (see Figure 1), and they could achieve superior performance than the current state-of-the-art methods.
-
Title:Attribute Group Editing for Reliable Few-shot Image Generation(属性组编辑用于可靠的小样本图像生成) paper
Author:Guanqi Ding, Xinzhe Han, Shuhui Wang, Shuzhe Wu, Xin Jin, Dandan Tu, Qingming Huang
Abstract:
Few-shot image generation is a challenging task even using the state-of-the-art Generative Adversarial Networks (GANs). Due to the unstable GAN training process and the limited training data, the generated images are often of low quality and low diversity. In this work, we propose a new editing-based method, i.e., Attribute Group Editing (AGE), for few-shot image generation. The basic assumption is that any image is a collection of attributes and the editing direction for a specific attribute is shared across all categories. AGE examines the internal representation learned in GANs and identifies semantically meaningful directions. Specifically, the class embedding, i.e., the mean vector of the latent codes from a specific category, is used to represent the category-relevant attributes, and the category-irrelevant attributes are learned globally by Sparse Dictionary Learning on the difference between the sample embedding and the class embedding. Given a GAN well trained on seen categories, diverse images of unseen categories can be synthesized through editing category-irrelevant attributes while keeping category-relevant attributes unchanged. Without re-training the GAN, AGE is capable of not only producing more realistic and diverse images for downstream visual applications with limited data but achieving controllable image editing with interpretable category-irrelevant directions.
-
Title:FLAG: Flow-based 3D Avatar Generation from Sparse Observations(从稀疏观察中生成基于流的 3D 头像)paper
Author:Sadegh Aliakbarian, Pashmina Cameron, Federica Bogo, Andrew Fitzgibbon, Thomas J. Cashman
Abstract:
To represent people in mixed reality applications for collaboration and communication, we need to generate realistic and faithful avatar poses. However, the signal streams that can be applied for this task from head-mounted devices (HMDs) are typically limited to head pose and hand pose estimates. While these signals are valuable, they are an incomplete representation of the human body, making it challenging to generate a faithful full-body avatar. We address this challenge by developing a flow-based generative model of the 3D human body from sparse observations, wherein we learn not only a conditional distribution of 3D human pose, but also a probabilistic mapping from observations to the latent space from which we can generate a plausible pose along with uncertainty estimates for the joints. We show that our approach is not only a strong predictive model, but can also act as an efficient pose prior in different optimization settings where a good initial latent code plays a major role.
-
Title:Dynamic Dual-Output Diffusion Models(动态双输出扩散模型)paper
Author:Yaniv Benny, Lior Wol
Abstract:
Iterative denoising-based generation, also known as denoising diffusion models, has recently been shown to be comparable in quality to other classes of generative models, and even surpass them. Including, in particular, Generative Adversarial Networks, which are currently the state of the art in many sub-tasks of image generation. However, a major drawback of this method is that it requires hundreds of iterations to produce a competitive result. Recent works have proposed solutions that allow for faster generation with fewer iterations, but the image quality gradually deteriorates with increasingly fewer iterations being applied during generation. In this paper, we reveal some of the causes that affect the generation quality of diffusion models, especially when sampling with few iterations, and come up with a simple, yet effective, solution to mitigate them. We consider two opposite equations for the iterative denoising, the first predicts the applied noise, and the second predicts the image directly. Our solution takes the two options and learns to dynamically alternate between them through the denoising process. Our proposed solution is general and can be applied to any existing diffusion model. As we show, when applied to various SOTA architectures, our solution immediately improves their generation quality, with negligible added complexity and parameters. We experiment on multiple datasets and configurations and run an extensive ablation study to support these findings.
-
Title:Sparse to Dense Dynamic 3D Facial Expression Generation(稀疏到密集的动态 3D 面部表情生成)paper
Author:Naima Otberdout, Claudio Ferrari, Mohamed Daoudi, Stefano Berretti, Alberto Del Bimbo
Abstract:
While deep learning-based 3D face generation has made a progress recently, the problem of dynamic 3D (4D) facial expression synthesis is less investigated. In this paper, we propose a novel solution to the following question: given one input 3D neutral face, can we generate dynamic 3D (4D) facial expressions from it? To tackle this problem, we first propose a mesh encoder-decoder architecture (Expr-ED) that exploits a set of 3D landmarks to generate an expressive 3D face from its neutral counterpart. Then, we extend it to 4D by modeling the temporal dynamics of facial expressions using a manifold-valued GAN capable of generating a sequence of 3D landmarks from an expression label (Motion3DGAN). The generated landmarks are fed into the mesh encoder-decoder, ultimately producing a sequence of 3D expressive faces. By decoupling the two steps, we separately address the non-linearity induced by the mesh deformation and motion dynamics. The experimental results on the CoMA dataset show that our mesh encoder-decoder guided by landmarks brings a significant improvement with respect to other landmark-based 3D fitting approaches, and that we can generate high quality dynamic facial expressions. This framework further enables the 3D expression intensity to be continuously adapted from low to high intensity. Finally, we show our framework can be applied to other tasks, such as 2D-3D facial expression transfer.